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ABSTRACT

This is the firsi Annual Technical Summary of the MIT Lincoln Laboratory
effort intv the parametsic siudy of diffusion-enhancement neiworks for spatiotem-
pora! grouping in real-time artificial vision. Spaiioiemporal grouping phenonena
are examined in the coniext of static and time-varving imagery. Dynamics that ex-
hibit staic feature grouping on muitiple scales as a function of time and iong-range
apparemt moiion beiween time-varying inpuis are developed for 2 biologically plau-
sible diffusion-eahancememt bilaver. Tiie architecture consists of a diffusion and a
contra~t-enhancement larer coupled by feediorward and feedback connections: input
is provided by a separate feature extracting laver. The model is cast as an analog
circuit that is realizable in VLSI. the parameters of which are selected to satisfy a
psyvchonhysical database on apparent motion.
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1. INTRODUCTION

This study suggests that diffusion-enhancement interactions play a fundamental role in human
preattentive perception. Understanding parallel netwo_ks that simulate such interactions is impor-
tant for understanding neurobiological findings and will suggest new experiments for researchers
in that field. Of special interest is the study of spatiotemporal networks because thev aid the
understanding of the static and dynamic grouping of stimuli that occurs in and across the visual.
auditory. and somatosensory systems 1-3'. Such grouping phenomena are also important in artifi-
cial vision systems 4. During the pas: yvear. a biologically plausible network model {4-7} has been
refined and used to explain some static and dynamic grouping experiments from the psychophys-
ical literature. This diffusion-enhancement bilaver (DEB) represents the interactions between a
layer of astrocivie glial cells and a neuronal laver. Long-range cor:munication is achieved via the
diffusion of A~ throughout the electrically coupled glial laver. and percept localization occurs in
the contrast-enhancing (CE) neuronal laver. These glial and neuronal layers are coupled by A~
currents Jeaking from glial endieet in close proximity to the neuronal layer.

In order 1o explain the DEB model. the reader must understand some of the biological and
phvchophysical resulis that led to the development of this model. thus a review of some relevant
literature is presemted before the model itself 1s described. Numerical simulations performed with
the model are aisu discussed.

The re<wii~ of examining the leaky diffusion layer in isolation from the CE laver are presented
first; sume vi 1ue abiities of the isolated CL laver are demonstrated next: and work performed with
the full netwo. . which reproduces sume of the described psychophysical results. is discussed last.
The simuiats..; ~ection suggests how the remaining phenomena will be achieved. enumerates some
of the probi iz - and ~uccesses of the study so far. and discusses work still to be done.




2. BACKGROUND: PSYCHOPHYSICAL PHENOMENA AND RELATED
NEUGROBIOLOGY

Psychophysical experiments that are being modeled and neurobiology that could support such
phenomena are described in this section. Both psychophysics and neurobiology provide data used
to set the DEB model parameters.

2.1 Psychcphysical Results
2.1.1 Spatiotemporal Grouping Phenomena

The DEB model replicates the effects of both static and dynamic grouping. A striking example
of static feature grouping in the visual domain is demonstrated by Marroquin’s diagram shown in
Figure 1 8. Notice how the dots in the diagram appear to group with their neighbors on greater
and greater scales over time as one stares at the center of the hexagon.

The simplest dynamic apparent motion effect is known as gamma motion and occurs when a
single light i turned on for a brief period of time and then turned off. Although the light is of a
fixed spatial extent. the perception iz of a light that first expands and then contracts [1}, as shown
in Figure 2.

New dynamic grouping phenomena emerge when two distinct stimuli interact over time to
form the percept of lung-range apparent motion. In the human visual system apparent motion
can be demonstrated with two lights of fixed spatial extent that are illuminated at distinct times
across a fixed spatial separation (Figure 3). With different spatial separations. illumination times.
and interstimulus intervals. the light can appear as two separate lights flashing. as one spot that
moves smoothly between two real lights. or as one spot that moves smoothly from the first location.
jumps. and continues moving smoothly te the second location {1.2). The most common form of
object motion. phi. gives no impression of a particular shape. while the contrasting beta motion
appears to be well-defined.

Similar effects can be achieved with tones in the auditory system [3]. Psychologists have
examined. in detail. the conditions that will produce these three distinct types of motion and
discovered that for fixed-flash durations there is a clear range of onset-to-onset interval (SOA)!
versus spatial separation that will produce smooth apparent motion (Figure 4). If one shortens the
SOA. hights begin jumping rather than smoothly moving between each other. while a still shorter

IThe onset-to-onset interval is often referred to as the “stimulus onset asynchrony™ (SOA) and is
defined as the time between the onset of two successive applications of a stimulus. Related is the
interstimulus mterval (ISI) that is defined as the time between two successive stimuli. Thus ISI +
stimulus durztion = SOA.




Figurc 1. Static feature grouping on multiple scales: evidence for the exzistence of a group-
g process wm the visual system 8.
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Figure 2. Gamma motion.
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Figurc 4. Long-range apparent motion. The filled rectangles represent sources in space-
time separations that produce the illusion of long-range apparent motion. The empty
rectangle « represent sources that are igmited loo soon for the spatial distance or are too far
away fur the gren IS1. The center rectanglc occurs soon enough to give the appearance
of smooth motion from the left-most rectangle {o the first shaded square. a short jump to
%o srcond shaded square. foliowed by smooth motion to the destnation. while the upper
~clangie «xhibils purc smooth motion.

SOA cause~ the lights to appear to flash simultaneously. If one lengthens the SOA bevond an
acceptabie limir. the lights flash independently of each other. Similar conditions can be created by
varying tue ~jratial separation of the two stimuli.

Once this ~tfect was discovered. the next step was to calculate rate of motion. Unfortunately.
it is unciear 1 best to calculate velocity of the illusory figures. Mechanical theory would plot
Vo= Lo cld: gy these experiments the distance traveled is clear. but the interpretation of
time i~ 1 1. 251 is used (the time between when the object was last seen in its initial location
and whet. 1t ~nowed up in its final location). cases exist for illusory objects with infinite velocity.
SOA is tue nevr reasonable choice. but it has been shown that stimulus duration affects apparent
motion. Noici~ 1 argues that this is as reasonable a plot as any: this report agrees and displays
it in Figure 5 o1 comparison purposes. It is unclear. however. whether the relationship between
velocity and spatial separation is linear.

To mirtn: understand apparent motion. other psychophysical experiments have been per-
formed: in the 1sual domain all involve additional stimuli. Split motion effects are demonstrated
with three hen~ of fixed spatial extent: the center light is illuminated and extinguished. followed
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Figure 5. Calculated velocity versus spatial separation {1].

by illuminating and extinguishing the two outer lights. If the two outer lights are equidistant to
the center light. the latter appears to split and move to both outer lights. If the two outer lights
are at staggered distances. the center light appears to move to the closest light (Figure 6). Also. if
the equidistant version of the display is placed in the periphery of the visual field. the center light
appears to move towards the light farthest from the fovea.

176981:5
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Figure 6. Split effects. Illummating one pownt source followed by illuminating two
equidistant point sources cause the first to appear to split and move +{o both of the later
sources. If these are not equidisiant 1o the first. movement 1s only to the closer of the
pair.




The opposite of the split efiect is the merge effect. in which £ra the 1o cater Bghus. then
the center light are ilfuminated and ex ‘ag.ished. If the 1wo outer Eghts are eguidistamt 10 the
center. thev both appear 10 move 10 the cen. s Ezhn and merge with . If the two cater fights are
1ot equidistant. oniy the one that is closer appears 10 muve 10 the center (Figure 7). Once again.
if the equidistant display is placed in the pesiphery of the visual field. the ourermost ight appears
to move toward the center.

e
EQUIDESTANT NCHEQUIDESTANT

ALY

SPACE (Degrees of Visual Arc)

TIME

Figure 7. Merge efiects. Hlluminaimg fero point sources eguidisiani from a thind. later-
illurmnated pomli source grres ife eppearsnce of the fro mergmng and becomung onz. If the
origmal pur 1= niot equidisiani jrom the th1zd point source. only the closer of ihe two wall
apw a5 {o more.

Another important multielement stimulus siudied causes the Ternus effect. which illustrates
that more than one distinct motion percept can be achieved from the same display by altering
subtle aspect=. In 1he Ternus display. two frames <with three aligned lights each are illuminated and
extinguished in succession. The frames are aligned so that two of the three lights occupy the same
space. and the third appears alternately on the left and right of the central two objects. When the
ISI is short. the third light appears to move around the central two objects (element motion). but
when the I1S] i- long the three appear 1o shift as a coherent group (Figure 8).

Although the cause of these motion efiects has been debated for nearly a century. it is known
that thev do not occur at the retinal level. as evident from a variation on the basic long-range
apparent motion experiment. In this variant. known as dichoptic presentations. the first light is
presented to the subject’s left eve. and the second light is presented to the subject’s right eve.
Apparent motion is experiencea. indicating that spatiotemporal interactions occur at the cortical
level. In addition and based on the split and merge experiments performed in the periphery. these
effects occur after the visual svstem has compressed (or down-sampled) the periphery in favor of the
fovea. 1.c.. at the visual cortex. Such sampling and compression occur in at least two places in the

rs
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Fizare ». Tesnes efiect. Niamineting shifting groups of three point sources produces the
flesion o ons ir. eicmen? molion or cll thrze m group moion. The percepl changes with
cheng:na ISL

visual svsten: . Firsi. the retina fiself comains a nonuniform population of rods and cones: the
densesi popuizil- -z occurs in the fovea. Second. the receprive fields of the retinal ganglion cells are
maskediv <maier i e fovea than in ie periphery. hence. the well-known cortical magnification
of ihe fovez e - xupression of the periphery. Based on neurobiology and psychophysics. it seems
evident ihai if.- ~ibsirate of apparent motion iies in the visual cortex.

This gzoviz o2 process is not restricted 1o sight. In the tactile area. if two vibrators agitate
ihe skin wizlh & ~...all ISL the subject experiences a single vibration between them. As in the visual
domain. ihe - - wecurs not in the skin but in the ¢ rtex: if the skin between the two vibrators is
localiv anaer_.-- zeq. the effect is still experienced 10 . Similar experiments have been devised for
the auditest -~ . and ~similar results were reported. Most bizarre are the intermodal experiments
in which apjaz- - - motion is perceived between a sound and a light source 3.

2.1.2 U~«ful Psychophysical Parameters

P<vei 1. - cal literature suggests that the structure of the DEB model and long-range ap-
parent meilon - .ampies continue to support this difiusion concept and begins to suggest rates at
which it ~mi.. wccur. Figure 4 provides spatial and temporal parameters to which the model
shonld confurn. The lower curves suggest that communication time varies with distance. while the
upper enrves ~ io_e~1 that object memory will fade after a time and that this fade occurs faster over
greater distan. - - Buth are considered indicative of a leaky diffusion network in which stimulus
activitv firss 1 - - and spatially expands. then falls and contracts: the DEB network was designed
to prodnce 1ue - efircts. For a fixed (small) spatial separation. there should be a range of SOAs in
which motion ~ ald be perceived. and outside that range no motion should be realized.




It is difficult to directly relate the model time and space scales 10 biological time and space.
so ratios are examined that allow units to be ignored. One ratio considered is that of the longest to
the shortest SOA for which smooth motion occurs at a fixed spatial separation. Figure 4 suggests
that this ratio is restricted 1o < £ with the ratio decreasing as the spatial separation increases. It
is not certain how to compare psychophvsicai with model-predicted velocities. because there is still
no way to interpret the velocities ¢f apparent motion.

2.2 Biological Considerations

Consicer that the above psvchophysical eflects have two salient processes: long-range com-
munication that facilitates interaction of features generated by the inputs (point light sources in
the visual domain) and a focusing process that enables objects in apparent motion to have a defini-
tive location. This section discusses the neurobiological elements that are believed most likelv to
provide the foundations for both these processes. Because it has already been suggested that static
and dvnamic grouping occurs in the cortex. the search begins there.

The coriex is divided almost evenly between nonneuronal and neuronal celis. It is felt that
the Jargest clas> of nonneural brain cells. the neuroglial. is the site of the long-range communication
process. while neuronal networks provide focusing.

2.2.1 Astrocyte Glial Cells

Once thonght of as only providing passive physical support. neuroglial cells now appear to
play an “act:ve role in maintaining normal brain physiology™ '11;. Concentration is on the astrocyte
glial cells becanse thev are known to provide long-range communication between coupled astrocytes
(Figure 9 . A.though to date such coupling has net been directly demonstrated in vivo (Kettenman
and Ranson. .2 suggest that this is due to technical difficulties). there is some evidence that it
occurs.” zna . ere is direct evidence for coupling in cultured astrocyte cells. Such communication
is not rare. ' «deed. Kettenman and others have observed that “mammalian astrocytes in cell
culture are «lv coupled to one another electrically™ and that “qualitative studies have shown
that custnrec ~trocytes form a highly coupled electrical syneytium™{12° that is believed to provide
the long-ran. ~-ommunication necessary to support the above psychophysical phenomena.

2.2.2 VYeuronal Networks

Mam ¢ .~ in the visual cortex are known to derive their input from networks of neurons. In
Hubel . -:..:..e cells (which respond to oriented lines) are postulated to be made up of a hierarchy
of lower-orae:. radially symmetric. center-surround cells. Similarly. complex cells (which respond

2Low moec-ia: weight dyve passes between adjacent cells [13). and glial networks are postulated to
act as potassrsy spatial buffers '11.12.14°.

10




Figure 9. Cat retinal astrocytes. “The radiating fibers enable astrocytes to interact with
neurons...” [11].

to oriented lines in a wide receptive field) and end-stopped cells are made up of a network of
simple cells. Also, directionally tuned, motion-sensitive cells are postulated to consist of inhibitory
and excitatory connections. Similar inhibitory and excitatory interconnections are used in the CE
neuronal network where cells are assumed to be self-exciting and latterly inhit.-ing within the layer.

2.2.3 Interactions

Astrocyte glial cells are known to interact electrically among themselves and with neurons as
well; the nature of that interaction is now considered.

Kettenman and Ransom [12] discovered that in cultured astrocyte syncytia, the resistance of
the electrical gap junctions between astrocytes is not voltage dependent over much of the membrane
potential fluctuation, thus a charge flow model examining intra-astrocyte communication should
be independent of the membrane potential of the astrocytes. Futhermore, it is known that “glial
cells...have a high potassium concentration and have negligible ionic permeability for ions other than
potassium™ [13; therefore, current flow is modeled through glial cells as transfer of potassiur ions
to or from the cell in a manner obeying Ohm’s law. When this process is expanded to encompass
current flow in a network of glial cells, the motion of these ions can be approximated with a diffusion
equation,

11




PR Neuroglial-neuronal nteractions.  Astrocytes are present near specific
U ~ take up and metabolize specific neurotransmitters (11].




It is further proposed that a glial svncyi. provides long-range communication between neu-
rons in a laver via transmission of potassium and other ions. It has been shown that “variations in
'K~ ertraceitular have profound efiects on neuronal excitability. modulating such processes as synap-
tic transmission and the initiation and propagation of action potentials™ [14}. Such [K~] variations
can be realized near the leaky endfeet of astrocytes that are in close proximity to neuronal synapses
(see Figure 10). This report is not the first to propose such an interaction. In 1965. Hertz {16} pro-
posed “a mechanism...in which the potassium ions. which have been lost from one nerve cell during
its activity. are transported through neuroglia cells to the outer surface of another ner2 cell. which
is then depolarized and stimulated: that is. a neuronal-neuroglial-neuronal impulse transmission.”
Hertz continues: “Potassium ions which have been released from an active area are transported
through neuroglia cells to the outside of other neurones [sicl: these are in turn stimulated and
potassium ions are released. to be transported actively through other neuroglia cells. In this way
the spreading depression is propagated across the entire cortex more rapidly than can be explained
by a diffusion.” The DEB model explicitly uses such interactions to spread and reinforce the charge
distribution in a diffusion laver.

2.2.4 Useful Biological Parameters

Oderte and Newman ‘14 note that glial cell endfeet “can contain up to 95% of the total cell
conductance.” This is important to determine how “leakv” the diffusion process should be.

Kettenmann and Ransom 12 have examined astrocyte coupling by electrically stimulating
(via KCI injections) one ghial cell and measuring its voltage and that of the neighboring cell. The
ratio of these voultages are fit to an exponential. which approximates the steady-state decay in a 1-
and 2-D syneytiun -{—f =€exp (-‘—lf-i) where d is the distance from the injection. and L is the length
constant. Kettenman and Ransom ;12" measured astrocyte L in vitro to be 80 to 100 ym. L can be
used to relate the DEB model to physical size of the biological networks and is related to the ratio
of the conductances representing the ratio of Ggg4 to G4 in Section 3.1. Further. L is not related
to the 1-D model explained herein as it is believed that the 1-D length constant would have to be
significantly greater than the 2-D. Indeed. experiments with restricted 2-D syncytia have L values
that are greater than their full 2-D syncytia counterparts (12, L is expected to be more valuable
in the context of the 2-D experiments.

15




3. DIFFUSION ENHANCEMENT BILAYER MODEL

3.1 DEB Network Architecture

The DEB model consists of two processes that mirror the two salient psychophysical processes
mentioned in Section 2.2. i.e., a diffusion layer that facilitates long-range interactions via local
connections and a focusing layer that provides the sensation of a localized object traversing a
spatial separation. In this model, featural input is presented and preprocessed by the sensor before
passing it on to spatiotemporal groupirg. In the case of the primate vision system, both center-
surround processing and logarithmic spatial mapping occur before grouping begins in the cortex [9].
Following feature extraction, activity is input to the diffusion layer that interact. with a localizing
CE layer. which periodically samples the state of the diffusion layer; its output is fed back to
the diffusion layer to provide support for new input and facilitate sustained interactions. This
report proposes that a motion detection system, such as that of van Santen [17] or Waxman [18],
detects the smooth motion of the activity maximum at the output of the CE layer and causes the
sensation of motion in the psvchophysical experiments. Also, activity prompted by a single input
at first grows and eventually dies down. so that after a period of time grouping is no longer possible
(Figure 4). This is an effect of the limited time span of featural input from a single feature, the
leaky diffusion laver. and the imposition of decay on the feedback from the CE layer.

With thi~ high-level description of the network in mind. a 1-D circuit form of the DEB model
is illustrated in Figure 11. Note the two layers — a diffusion layer that permits long-range charge
interactions and a CE layver that localizes the charge distribution from the diffusion layer and
produces impruved SNR via the feedback pathways. Currently, the electrical model is simulated
by integrating tix governing equations also shown in Figure 11. A separate input layer of feature-
sensitive neurwi~ provides activity to the diffusion layer via glial cell endfeet. Determining the
profile of this ~..rce and comparing it to the biology is a major thrust of our research and is
discussed in S a1 1.2, Glial endfeet also bidirectionally carry feedforward and feedback activity
(i.e.. charge ur &' ).

The ditf.i~. .. laver of the DEB model is governed by three coupled differential equations based
on Ohm's law: - v first represents the spatially coupled diffusion layer:

1)

o Ga [on L gli=n _90] — Sa
Eos e oY -2 - 220
Gge [Cg i) i Gai [Ca A() i
e~ fger-a) &
This e, . 1 contains several parameters that can be considered independent of the other
coupled equat...... Conductivity Gg, controls the speed with which charge Q, is distributed

throughout i... .er. while G4 controls how rapidly charge leaks into the environment. Together,

17
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conductivities G¢g and G, determine the spatial extent over which charge can spread in the diffu-
sion laver. The other two equations govern charge input to the diffusion layer as provided by the
featural input neurons ‘Equation (2) and feedback from the CE neurons [Equation (3)].

dQi(i) _ Ggi [g;_ i ]
i G_Q, QgJ. (2)
dQc(i) _  Gae [Co s _ (i)]
) [ 20" -0y 3)

Conductance G4, controls the rate at which new inputs affect the charge on the diffusion layer.
G ge controls the rate at which the CE laver feels the effects of developing charge distributions on the
diffusion layer. as well as the rate at which feedback from the CE layer modifies the diffusion layer.
The capacitors represented in all three equations store the distribution of charge in the diffusion
laver C,. and at the interfaces to the input C, and the enhancement layers (Ce).

The charge in the CE endfeet is periodically sampled® by the CE neurons. which process
activity on a shorter time scale than the diffusion layer. The sampled charge is contrast enhanced
via a network originally formulated by Grossherg 19'. and the output from this network is fed back
to the facing endfeet. The equation governing this system of N neurons is

\%_f- = —AQ - Q. ST HQL) - BIQ,). )
k
where
CQ? 0
£(0) = Q- Q) 020Q<Qy 5)
cQ Q) < Q.

Equation 141 can be rewritten as a shunting short-term memory model with charge limited
to the range 0.B. Depending on the choice of parameters. the rapidly attained equilibrium can
either pich the node with maximal charge or contrast-enhance the charge across the layver. The
latter propeities are of interest here where constant signals are suppressed. noise fluctuations are
quenched. and all nodes of nearly maximal activity are enhanced. In any case. the dynamics lead

3Periodic sampling in time by the CE neurons can be identified with the refractory period of neurons
that are phase-locked in a laver.




to a normalization of activity across the laver, with total equilibrium activity equal to E = B — %
When in this domain. the nodes for which activities fall below

@
B-3

Qt) = (6)

for a sufficiently large time will be forced to lose all activation. i.e., they will be quenched.

Because feedback reactivates the diffusion laver, even once the original input is off. there is
the need to dampen the feedback amplitude over time. Without this step a single light will be
sustained in memory forever. This problem is resolved by forcing the parameter B in Equation (4)
to decay with time between inputs to the system. When a new input stimulates the visual field,
the CE laver is reenergized and B is reset to its maximum value. Between inputs this decay is
modeled as

B = Bma.rD‘-(D < 1) . (7)
or
B =0 By - 7). (8)

where D =< 1. and & (2) is a threshold linear function equal to z. if x > o and 0 otherwise. (To
date. most experiments have set o = 0.)

3.2 Relationship to Biological Networks

A number of DEB model components have direct correlates in biology. Capacitor C, represents
a neuronal-astroglial interconnect that is locally excited by presented features. A feature-sensitive
neuron fires: as it repolarizes '~ is released into the extracellular compartment. (The input source
function described in Section 2.1.1 tries to model this charge release.) A~ ion pumps bring A~ onto
(. which represents a highly permeable endfoot of an astrocyte glial cell (cf. A~ -spatial buffering
[15]). Here the K~ is freely diffused via ion currents within glia (with membrane capacitance
. Cg) and forms a network through electrical gap junctions between astrocyte glial cells {12]. The
interglial connections are represented by the conductors Ggg. A portion of the K~ is diffused out of
the cells at endfeet to an upper. CE neuronal layer. which is excited by the increased extracellular
K~ concentration. This astroglial-neuronal interconnect is represented by Ce. It is hypothesized
that the neuronal laver interacts within itself to contrast-enhance its own activity. further releasing
K~ as it fires. It then feeds this contrast-enhanced A~ profile back to the glial layer via the same
endfeet. and thereby reinforces the charge distribution in the glial network. particularly near the




charge maximum. The output of the CE laver also provides the basis for the percept of a compact
form in smooth motion.

3.3 Alternative Models

One interesting alternative model for long-range apparent motion was proposed by Grossberg
and Rudd 20.. Their basic model elements that are responsible for creating continuous motion
paths from spatially disparate inputs are verv similar to those currently being studied. Essentially,
localized inputs (e.g.. flashes of light) are assumed to excite a spatially extended Gaussian acti-
vation pattern of fixed scale. By combining a preprocessing stage, which detects spatial gradients
of brightness with a temporal change detector. their input functions grow and decay over time.
When this growth function is used to excite the Gaussian activity pattern, one obtains a fixed-scale
Gaussian activity wave with amplitude that grows and then decays. Grossberg and Rudd demon-
strate that if spatially separate inputs are flashed at different times, then for an appropriate scale
Gaussian the two activity waves will merge into a single activity hump. the maximum of which
slides continuously from the position of the initial to that of the final input. They then assume a
separate contrast-enhancing process detects this moving maximum.

The DEB model shares the two essential elements of the Grossberg-Rudd model. i.e., a spa-
tially extended response to an input that evolves over time. followed by a CE process that localizes
the response: however. where Grossberg and Rudd assume a fixed-scale Gaussian response to an
input. the DEB utilizes a diffusion process that responds with increasing scale as a function of time.
Both modei~ seeh other earlier processes to determine the dvnamic nature of the input function
responsible {or exciting the activity profiles that will interact with one another.

Anotner aiternative model. introduced by Waxman et al. [18}, is the short-range motion
process. the eswential concept of which is the temporal growth and decay of a Gaussian activity
wave in respans to a transient input. For noninteracting inputs (i.e.. a Gaussian wave with scale
smaller than tne ~pacing of inputs) this process provides a means to extract directly the speed of
moving teats«~ When the features are close to one another the waves do interact. and in so doing
they interpuiate “ne trajectory between inputs.




4. NUMERICAL SIMULATIONS

4.1 Overview

To understand the numerical simulations performed over the past vear. a brief historical
perspective is provided. Prior to this study differential equations (governing a much simpler model)
were simulated by reproducing the effects of individual terms. In the case of the diffusion layer,
activity was literally spread by using Gaussian convolution. In the case of the CE layer, the feedback
point was determined by masking out areas of negative or zero Gaussian curvature and negative
mean curvature (where the slope of the activity was zero) and selecting the central point of the -
surviving. locally maximal plateaus 4-7.. The differential equations were integrated directly, thus
removing one possible source of error when simulating the network. In addition. a fully parallel CE
network. which will be easier to implement in VLSI than the curvature masking mechanism, has
been adopted (and adapted) with the added benefit of providing an adjustable distributed feedback
to the current diffusion layer. Moreover. the dvnamics of the activity flow along the endfeet that
connect the lavers are included.

Several tools were developed for understanding the complex dynamics of this network. Among
these. the concept of the “ideal input™ (discussed in Section 4.2) and how the definition of ideal
changed with the understanding of the network and the appreciation of its subtieties. Simulations
performed on the diffusion layer in isolation are presented. the CE layer in isolation is discussed.
and the interconnected bilaver is considered.

4.2 Ideal Input Source Function

When a feature is detected by the input laver of neurons. they fire for some period of time and
release \'~ ions into their environment. Thus. an input is characterized by a charge source that is
a function of time. Because the smooth motion of a unique maximum between two input locations
is to be modeled (see Figure 3). an ideal input can be generated by searching for that input source
function that produces the most rapid motion between the two inputs without producing multiple
maxima. This is the essence of the current definition of ideal input. and it remains unchanged
throughout the discussion. (In principle. it is preferable to use the actual A~ release rate from
neurons. howeter. such measurements are not readily available.) Starting from the known profile of
a Gaussian distribution of activity on all three lavers in proportion to the ratio of the capacitors?
centered at the first input location. the search began for an ideal input at a displaced location
that would satisfy the design constraints. This ideal input is designated as a first-generation ideal
input. If this ideal input is used to generate the initial activity profile and reexecute the search at

1Experiments not presented here indicated that this was a reasonable approximation to the distri-
bution of activity throughout the network after presentation for a limited period of time.




the second location. a second-generation ideal input is created. This procedure is iterated until the
ideal input source function converges.

The ideal input was considered in several different domains in order to better understand each.
and its definition was extended as new effects were discovered. The most significant variations are:

1. Tight constraint (TC)
e Relevant to both the isolated diffusion layer and the entire network
¢ Ideal for a range of spatial separations between two inputs

¢ Requires a unique activity maximum on the glial enhancement endfeet at every
integrated time instant

o

. Relaxed constraint (RC)
o Relevant to entire network
¢ Ideal for a range of spatial separations between two inputs
¢ Unique maximum fed back from CE layver endfeet

3. Extended relaxed constraint (ERC)

e Relevant to entire network

o Ideal for a range of spatial separations

o Unique maximum fed back from CE layer

¢ Maintains final position

L8

. Simplified extended relaxed constraint (SERC)
¢ Relevant to entire network
¢ Ideal for a single spatial separation
¢ Unique maximum fed back from CE laver

o \laintains final position of activity maximum after it has moved.

The first variation (TC’) was designed to examine the conditions that would cause an isolated
diffusion network to exhibit long-range apparent motion effects (Figure 3) for a range of spatial
separations between inputs. The second variation (RC) was developed from TC' when it was
considered that the output from the feedback laver should serve as input to a separate motion
extraction network. It is relaxed because it is possible to have multiple maxima at the enhancment
endfeet of the glial laver between the times when the CE layer samples this laver. In addition the
CE layer quenches low-level noise containing multiple maxima when in the presence of a strong
signal.




The third variation (ERC) adds the constraint that after the maximum has moved from the
first to the second location. it must remain there. This constraint was added when it was noticed
that the activity peak. after arriving at the second location. would move back again towards the first
feature location. Although this was always present in the 7°C ideal inputs, it was more pronounced
when the full network was connected with feedback. It was necessary to choose the minimum charge
needed at each time to maintain the maximum at its final position.

Finally. when ERC created a difficulty. requirements were simplified (the fourth variation,
SERC) so that the ideal input would work for a fixed distance. This greatly improved the in-
teractive nature of the software development system: the search time for the ER(C variation (one
generation. 150 time units) is on the order of 4 hr on a Sparcstation 1-+. while the SERC search
time is about 20 min. For reference. 150 time units of network execution time (no search) requires
a few seconds to calculate.

4.3 Diffusion Network in Isolation

As noted in Section 1. the reporting period began by examining the isolated leaky diffusion
network. Iniually it was desirable to verifv that network dynamics could replicate phenomena
discussed in Section 2.1.1 and to gain an understanding of the effects of the individual network
parameters.

Electrical network theory states that the ratio of the capacitors largely determines where
charge is stored within the network. It was discovered that by choosing Cg = 10 x (. Cg = 10 x C.
rapid spatial di=tzibution is possible. When (; is set an order of magnitude lower. charge is isolated
in a small regiui about the input location. When (' is set higher. interactions occur so rapidly that
features quuchly wash vut. In addition. simulation time increases drastically since the integration
step must then .- reduced in the numerical integration routines.

G, tepres s the astrocyte glial cell potassium leakage to the extracellular environment.
which biuwuy +  2gest~ should represent a little more than 5% of cell extracellular conductance
and alsu aiivv weran spatial distribution of charge. Independently it was discovered that setting
Gy = Wi« produces activation profiles with distinct maxima that still equilibrate after a
reasonable por of time. Choosing Gy = 0.1 x Gyy leads to “washed-out™ maxima due to loss
to the extiacr.. o ar compartment. while choosing Gy = 0.001 « G4, causes activity to be trapped
entirely i the Al laver.

Wit pataeters set as above. TC is used as a tool to determine an ideal input that produces
efiects sl .1e lung-range apparent motion effects for spatial separations of 3 to 13 nodes. A
first-gencrati s, adeal input is shown in Figure 12. The alternating large/small input is caused
by the ureed. .igorithm”™ that administers as much charge as possible at each time unit. Since
doubling tue . Lber uf integration time steps doubles the frequency of this alternation, it is not
considerc i, tamt but rather an artifact of the method used to find the TC ideal input. On the
other hanu. 1. ruader scale scalloping pattern is important and is retained at nearly the same
frequenc .. the number of time steps is doubled. This is due to the constraint that the ideal
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input must cause smooth mosicn for all spatial displacements in the range of 3 16 13 nodes. Each of
the smaller dispiacements arsives at its final destination soomer than the lager displacements. and
once it does it no longer infiuences the calculation. which responds by administering the maximan
quantity of charge for the remainder of the displacements. resultinrg in small spikes of activiy.
Given this ideal input. the jong-range apparert motion efiect can be recreated for each separation
individually. and the speed at which the singie maximummn moves from its initial 10 fimal Jocation
can be examined. The rate of motion i shown in Figure 13. Unfortumatelx. this is only a first-
generation ideal input. so aithough IS1 is known the duzation of the initial input must be estimated.
Because it i knoxn thar the initial profde is similar 10 an izput with that IS1. 150 time units are
used.
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Fraw. . TC ideal input. The scalloped cijects arc due to each smaller displacement
arrre.- . 4 s final destination.

4.4 CE Network in Isolation

The CE iaver provides a localized representation of the diffuse activation. Recall that localized
output of this .aver also provides the input to motion detectors. In addition. it supports the
wcalized ma:.:i. un and sustains it in memory. thereby enhancing iterations of inputs to interact
on the diifu~i Laver. After a brief period of time. feedback amplitude decreases and the system
forgets past in.. :is. The process of modifving the amoum of activity that is fed back is introduced
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Gth this stady. Before connecting the CE laver 1o the rest of the system. there were experiments
with the effeci= of a decaving B parameter :see Equations (7) and (8);. The activation profile
depicted in Figure 11 comes from an apparent motion experiment in which the initial stimulus
occurs at node 50. causes acdivity growth. and begins to decay as a second stimulus is applied at
node 5>. The activiix profile of the enhancement endfeet (C,} is sampled when the second - timulus
is just beginning to affect the diffusion Javer. Note that with a large B = 5001. the second input
survives the CE laver but with smaller B. e.g.. > 1001. the second input is quenched. This property
suppresses fow-ieve] backaround noise. Also. note that the extent of the feedback decreases with
decreased B. This is important in replicating the efiect of an extinguished single light in the gamma
motion experimein.

4.5 Complete DEB Network

The nexi series of examples is the result of working with the entire network. Once the SERC
ideal inpui i~ found. it is used to demonstrate the gamma and the long-range apparent motion
effects. )
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NODE

Figure 14. Feedback activation profiles. As B decreases so does the extent of the feedback
until the network selects only the marimum node. By causing B to decay between inputs.
the network forgets earlier stimulation and reproduces the extinguishing half of the gamma
effect.

4.5.1 Ideal Input Source Function

A converged. fourth-generation SERC ideal input is calculated for spatial separation of nine
nodes using the alternate decay formulation for B [Equation (8)]. The resulting input function
is shown in Figure 15 and resembles the firing pattern of a neuron that is depleting its stored
K. This shape is caused by the combination of two constraints: the greedy algorithm described
in Section 4.3 administers as much charge as possible at each time unit, and the evaluation for
multiple maxima is enforced only at the output of the CE laver; in this case. every five time units.
The second peak in activity occurs in the long-range apparent motion example when the second
light source has completed its motion from the first to the second location. and the new criteria
(that there must be no backward motion of the activity maximum) engages. This input is used for
all the remaining examples.

4.5.2 Static Inputs

Figure 16 represents the response of the CE layer to a static 1-D “image” with structure
on multiple scales. In this image there are three point-source inputs at nodes 45, 49, and 58.
In the following experimeuts. sampling by the CE layver occurs every five time units. so only the
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Figuic 15. SERC ideal input source fuinction. Converged (fourth generation) for spatial
separation. of ‘nine nodes belu een inputs-with an IS of 150 time units.

output from. that laver at t = dn. (n = 1.2.3...) is illustrated. Excerpts.are shown of the CE
layer response at increasing time: .initially (t = 5) the network. responds with-maxima at each of
the thrée inputs. then (¢ = 10) only two maxima survive as the two. closest sources interact and
merge on the dirfusion layer. and finally (t = 50) all three¢ merge.. and the network displays only
a single ‘maximum on this. coarser scale. Ast — oc this.network generates a maximum that can
be used.as a forus of attention near the geometric mean of the input locations. Note that if one's
eves followed thie absolute maximum value. concentration would first be on the-small, then the
larger-scale interactions:

4.5.3 Gamma Motion

The next experinient demonstrates the gamma effect (Figure 17). Stimulus is administered to
the input endteet, activity accumulates in the diffusion layer and percolates up to the enhancement
endfeet. which activate the CE laver. This layer initially responds with narrow feedback, then
spreads the spatial extent of the feedback in response to the spreading of input activity, and finally
collapses the spatial extent back to a point-source. Thé amplitude of the feedback diminishes
with time. pernmitting the-system to-forget ancient inputs. The result is a blob that expands and
contracts with time.

-
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Figure 16. Multiscale grouping. Three inputs at nodes 45, 49. and 58 interact on in-
creasing scalc with increasing time. Discrete activation on the CE layer is pictured as
continuous curves.

4.5.4 Long-Range Apparent Motion

The dynamic image in the long-range apparent motion experiment described above was ex-
amined. concentrating on motion effects. At t = 0, a source is activated at node 50. and 150 time
units later a second input is activated at node 59. At node 50. the CE layer initially produces a
maximum. which moves through node 51, skips 52 to 55. moves through 56. skips 57. and completes
its journev at node 58 (Figure 18).

Although input functions that provided smoother motion have been demonstrated. this ex-
ample is not a~ smooth as had been hoped. Two possibilities exist: (1) the second input might
have occurred too soon after the first. and the system responded with a “jumping maximum” such
as the center black rectangle in Figure 3: and (2) the network parameters may not have been cor-
rectly set. By increasing Q1 in Equation (3). the output of the CE layer can be better localized.
> which would inhibit motion by producing increased support in the area of the current maximum
value. thus causing slower motion that could smoothly move through all intermediate nodes. Later
experiments will examine this possibility.
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Figure 17. Gamma effect. 4 single input inilially induces a narrow marimum. which
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activation on the CE layer is pictured as conlinuous curves.
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exhibits a jump. as in Figure 3.
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5. WORK IN PROGRESS

A dynamic model has been introduced for a two-lavered network that spatiotemporally groups
its inputs on multiple scales as a function of time. Mloreover, it generates a long-range apparent
motion between spatially separate inputs introduced at different times.

Current research includes a return to the simpler experiments with constant or exponentially
decaying input source functions, such as those that were originally performed with the diffusion
network in isolation, This approach leads to more rapid understanding of the network and its
capabilities while sacrificing the search techniques that lead to an input with known qualities.
It had been hoped to find an input that would produce smooth motion over a range of spatial
separations for the entire network. and significant time was spent tweaking the system to achieve
this end. If this method had been successful. this input function would then have been perturbed to
see how it could be modified while still producing the same result. Unfortunately, although initial
experiments with the diffusion network in isolation proved successful, a final represention of the
input function that would produce smooth motion in the final system was not found. There are a
number of poussible reasons: the most likely is that a region of space-time outside the smooth-motion
regime depicted in Figure 4 was being examined. By using simple input activation profiles such as
constant. Gaussian. and exponentially decaving input functions as a guide to the correct domain
of parameters. along with the ideal input tool to find an input that will produce smooth motion, it
is hoped the DEB model will fully reproduce the psychophysical results listed.

Future work will include the psvchophysical phenomena not vet discussed: split. merge.
and peripheral etfects will all be considered. Once the split and merge effects are working, the
peripheral effect~ should be simple to implement. as these are believed to be due to the topological
preprocessing - e before the data arrives at the network. To simulate the biological system. the
data will be oearithmically mapped before administering activity to the system: this procedure
is expecte - sproduce the peripheral psvchophysical results. The final effort to be explored is
the 1-D Ter: - siect: when its results can be reproduced. the DEB model will be extended to two
dimension~ * - oriented inputs.
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